An observation-based correction for aerosol effects on NO₂ retrievals using the Absorbing Aerosol Index

Matthew Cooper¹
Randall Martin^{1,2,3}
Melanie Hammer¹
Chris McLinden⁴

- 1. Dalhousie University 2. Harvard-Smithsonian Center for Astrophysics
- 3. Washington University in St. Louis
- 4. Environment and Climate Change Canada

Aerosols affect satellite sensitivity to NO₂

Shape Factor 0.2 0.6 0.8 15 15 NO₂ Shape Factor (S) w with aerosols w without aerosols 10 10 Altitude $AMF = \int w * Sdz$ 5 5 0 0.5 1.5 2 2.5 Scattering Weight (w)

Lowers (Raises) AMF

An AAI – Aerosol Correction Relationship

- Absorbing Aerosol Index
 - A measurement of aerosol absorption and scattering along light path
 - No a priori aerosol information

$$AAI = -100 \log_{10} \left[\frac{I^{observed}}{I^{Rayleigh}} \right]$$

- AAI can correct ozone retrievals (Torres & Bhartia 1999)
- Investigate for NO₂ using one year of synthetic OMI observations using GEOS-Chem
 - Only using cloud-free observations

A Robust AAI-Aerosol Correction Relationship

$$SF2km = \int_{0}^{2km} S(z)dz \qquad \qquad Aerosol \ Correction = \frac{AMF_{with \ aerosols}}{AMF_{without \ aerosols}}$$

Evaluating the Obs-based Aerosol Correction

- Obs-based correction recreates the expected spatial distribution
- Obs-based correction within 5% of true correction 98% of cases
- Average error 0.9%

Potential Error Sources?

Obs-Based Correction works equally well for many aerosol types and conditions

Demonstrating with real OMI observations

- Use real OMI AAI values to estimate aerosol correction
- Observation-based correction reflects new information from observations

Advantages of an AAI-Based Correction

- •Implicit aerosol correction does not account for AMF increases due to scattering aerosol (Chimot et al., 2016)
 - AAI-based correction accounts for effects from both scattering and absorbing aerosol
- Explicit aerosol corrections rely on precision of modeled aerosol fields
 - AAI-AC model is insensitive to modeled aerosol errors
- •AAI is a *measurement* that does not require any assumptions about aerosol type or distribution
 - And works well for most aerosol types and mixtures

An AAI-based correction is a promising method for estimating aerosol impacts on AMF from observations